

Sbox

Sbox is a toolbox for Slurm that provides information about users’ accounts and jobs as well as information about the cluster resources. Sbox also can help Slurm admins to collect users’ information by user and job IDs. Interactive command uses Slurm srun and sbatch commands to request resources interactively including running a Jupyter server on the cluster.

Note

The source code and latest release of Sbox is available on the following repository https://github.com/ashki23/sbox.

[image: _images/SBox_application_SC21.png]

Features

	Access to many Slurm features at one place.

	Facilitate request resources interactively.

	Easy ability to start a JupyerLab session.

	JupyterLab interface with multiple kernels.

	JupyterLab interface with access to premade virtual environments such as TensorFlow and PyTorch.

	JupyterLab interface with access to a local virtual environments.

	Easy to set up and configure. It can be installed in the user level or cluster-wide.

	Explanatory help options (--help) and reference manuals (man sbox, man interactive).

	Improving seff command by using top command for showing the running jobs efficiency.

	Managing users ssh-agent to be able to communicate with clients outside (e.g. GitHub) or within the cluster (other nodes) without asking for the passphrase.

	Helping users by showing their fairshares, accounts, quotas, jobs’ history, running and pending jobs, as well as cluster resources.

Install

	Quick install

	Requirements
	Python kernel (Anaconda)

	R kernel

	Julia kernel

	On demand Python and R pakages

	Configuration

Commands

	Sbox

	Interactive

 Quick install

Quick install

	Download and extract the latest Sbox
release [https://github.com/ashki23/sbox/releases/latest].

	To access JupyerLab sessions, install Anaconda and create required
virtual environments and modulefiles. Review “Requirements” to learn
more.

	Update the config file based on the cluster information. Review
“Configuration” to learn more.

	Place a modulefile for Sbox under $MODULEPATH/sbox directory and
load the module or add the Sbox bin directory to $PATH. A Sbox
template modulefile can be found in
here [https://github.com/ashki23/sbox/blob/main/templates/1.2.lua].

Requirements

Sbox requires Slurm and Python >= 3.6.8. The interactive jupyter
command requires Anaconda and an environment module system
(e.g. Lmod [https://lmod.readthedocs.io/en/latest/]) in addition to
Slurm and Python. To use R and Julia in JupyterLab sessions, we need R
and irkernel as well as Julia to be installed.

Note that Sbox options require some other commands. Review their
requirements under the command line options.

The following shows how to install Anaconda and create the required
virtual envs and modulefiles.

Python kernel (Anaconda)

The interactive jupyter command provides a JupyterLab interface for
running Python and many scientific packages by using Anaconda. To
install Anaconda, find the latest version of Anaconda from
here [https://www.anaconda.com/products/individual#linux] and run:

wget https://repo.anaconda.com/archive/Anaconda3-<year.month>-Linux-x86_64.sh
bash Anaconda3-<year.month>-Linux-x86_64.sh -b -p /<cluster software path>/anaconda/<year.month>

In the above lines, update <year.month> (e.g. 2021.05) based on
the Anaconda version and <cluster software path>
(e.g. /cluster/software/) based on the cluster path.

To load Anaconda by modeule load command, create the following
modeulefile under $MODULEPATH/anaconda/<year.month>.lua:

-- -*- lua -*-

whatis([[Name : anaconda]])
whatis([[Version : <year.month>]])
whatis([[Target : x86_64]])
whatis([[Short description : Python3 distribution including conda and 250+ scientific packages.]])
help([[Python3 distribution including conda and 250+ scientific packages.]])

-- Create environment variables
local this_root = "/<cluster software path>/anaconda/<year.month>"

prepend_path("PATH", this_root .. "/bin", ":")
prepend_path("LIBRARY_PATH", this_root .. "/lib", ":")
prepend_path("LD_LIBRARY_PATH", this_root .. "/lib", ":")
prepend_path("MANPATH", this_root .. "/share/man", ":")
prepend_path("INCLUDE", this_root .. "/include", ":")
prepend_path("C_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("CPLUS_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("PKG_CONFIG_PATH", this_root .. "/lib/pkgconfig", ":")
setenv("ANACONDA_ROOT", this_root)

Or adding the following tcl modulefile under
$MODULEPATH/anaconda/<year.month>:

#%Module1.0
Metadata
set this_module anaconda
set this_version <year.month>
set this_root /<cluster software path>/${this_module}/${this_version}
set this_docs https://docs.anaconda.com/
set this_module_upper [string toupper ${this_module}]
Module
proc ModulesHelp { } {
 global this_module this_version this_root this_docs
 puts stderr "**"
 puts stderr "Name: ${this_module}"
 puts stderr "Version: ${this_version}"
 puts stderr "Documentation: ${this_docs}"
 puts stderr "**\n"
}

module-whatis "Set up environment for ${this_module} ${this_version}"

prepend-path PATH ${this_root}/bin
prepend-path LIBRARY_PATH ${this_root}/lib
prepend-path LD_LIBRARY_PATH ${this_root}/lib
prepend-path MANPATH ${this_root}/share/man
prepend-path INCLUDE ${this_root}/include
prepend-path C_INCLUDE_PATH ${this_root}/include
prepend-path CPLUS_INCLUDE_PATH ${this_root}/include
prepend-path PKG_CONFIG_PATH ${this_root}/lib/pkgconfig
setenv ${this_module_upper}_ROOT ${this_root}

R kernel

Users can run R scripts within a JupterLab notebook by
interactive jupyter -k r. To have R, irkernel and many other R
packages, we can create the following env including
r-essentials [https://docs.anaconda.com/anaconda/user-guide/tasks/using-r-language/]
from Anaconda:

cd /<cluster software path>/anaconda/<year.month>
./bin/conda create -n r-essentials-<R version> -c conda-forge r-essentials r-base r-irkernel jupyterlab

In the above lines, <cluster software path> and <year.month>
should be updated based on the Anaconda path and version, and
<R version> (e.g. 4.0.3) based on the version of R in the env.

The following modulefile should be added to
$MODULEPATH/r-essentials/<R version>.lua to be able to load the R
env:

-- -*- lua -*-

whatis([[Name : r-essentials]])
whatis([[Version : <R version>]])
whatis([[Target : x86_64]])
whatis([[Short description : A conda environment for R and 80+ scientific packages.]])
help([[A conda environment for R and 80+ scientific packages.]])

-- Create environment variables
local this_root = "/<cluster software path>/anaconda/envs/r-essentials-<R version>"

prepend_path("PATH", this_root .. "/bin", ":")
prepend_path("LIBRARY_PATH", this_root .. "/lib", ":")
prepend_path("LD_LIBRARY_PATH", this_root .. "/lib", ":")
prepend_path("MANPATH", this_root .. "/share/man", ":")
prepend_path("INCLUDE", this_root .. "/include", ":")
prepend_path("C_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("CPLUS_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("PKG_CONFIG_PATH", this_root .. "/lib/pkgconfig", ":")
setenv("ANACONDA_ROOT", this_root)

Or adding a tcl modulefile similar to the above tcl template for
Anaconda.

Julia kernel

The interactive jupyter -k julia command provides Julia from a
JupyterLab notebook. Julia can be installed from
Spack [https://spack.io/],
source [https://julialang.org/downloads/] or
Anaconda [https://anaconda.org/conda-forge/julia]. The following
shows how to install Julia from Anaconda (Note that if Julia have been
installed on the cluster, you can skip this section and use the
available Julia module instead).

cd /<cluster software path>/anaconda/<year.month>
./bin/conda create -n julia-<version> -c conda-forge julia

In the above lines, <cluster software path> and <year.month>
should be updated based on the Anaconda path and version, and
<version> (e.g. 1.6.1) based on the version of Julia in the env.

The following modulefile should be added to
$MODULEPATH/julia/<version>.lua:

-- -*- lua -*-

whatis([[Name : julia]])
whatis([[Version : <version>]])
whatis([[Target : x86_64]])
whatis([[Short description : The Julia Language: A fresh approach to technical computing]])
help([[The Julia Language: A fresh approach to technical computing]])

-- Create environment variables
local this_root = "/<cluster software path>/anaconda/envs/julia-<version>"

prepend_path("PATH", this_root .. "/bin", ":")
prepend_path("LIBRARY_PATH", this_root .. "/lib", ":")
prepend_path("LD_LIBRARY_PATH", this_root .. "/lib", ":")
prepend_path("MANPATH", this_root .. "/share/man", ":")
prepend_path("INCLUDE", this_root .. "/include", ":")
prepend_path("C_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("CPLUS_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("PKG_CONFIG_PATH", this_root .. "/lib/pkgconfig", ":")
setenv("ANACONDA_ROOT", this_root)

Or adding a tcl modulefile similar to the above tcl template for
Anaconda.

Note that the first time that users run
interactive jupyter -k julia, Julia Jupyter kernal (IJulia) will be
installed under ~/.julia.

On demand Python and R pakages

Popular Python pakages that are not available in Anaconda can be added
to interactive jupyter -e. For instance the following shows how to
create a TensorFlow (TF) env:

cd /<cluster software path>/anaconda/<year.month>
./bin/conda create -n tensorflow-gpu-<version> anaconda
./bin/conda install -n tensorflow-gpu-<version> tensorflow-gpu gpustat

Similarly, we can create a PyTorch (PT) env with:

cd /<cluster software path>/anaconda/<year.month>
./bin/conda create -n pytorch-<version> anaconda
./bin/conda install -n pytorch-<version> -c pytorch pytorch gpustat

For instance, we can collect popular R bio packages in the following env
from bioconda channel:

cd /<cluster software path>/anaconda/<year.month>
./bin/conda create -n r-bioessentials-<version> -c bioconda -c conda-forge bioconductor-edger bioconductor-oligo r-monocle3 r-signac r-seurat scanpy macs2 jupyterlab r-irkernel

In the above lines, <cluster software path> and <year.month>
should be updated based on the Anaconda path and version, and
<version> (e.g. 2.4.1) based on the version of TF, PT, or R.

For each env, we need to add a modulefile to
$MODULEPATH/<env name>/<version>.lua. For instance
$MODULEPATH/tensorflow/<version>.lua is:

-- -*- lua -*-

whatis([[Name : tensorflow]])
whatis([[Version : <version>]])
whatis([[Target : x86_64]])
whatis([[Short description : Python3 distribution including TensorFlow and 250+ scientific packages.]])
help([[Python3 distribution including TensorFlow and 250+ scientific packages.]])

-- Create environment variables
local this_root = "/<cluster software path>/anaconda/envs/tensorflow-gpu-<version>"

prepend_path("PATH", this_root .. "/bin", ":")
prepend_path("LIBRARY_PATH", this_root .. "/lib", ":")
prepend_path("LD_LIBRARY_PATH", this_root .. "/lib", ":")
prepend_path("MANPATH", this_root .. "/share/man", ":")
prepend_path("INCLUDE", this_root .. "/include", ":")
prepend_path("C_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("CPLUS_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("PKG_CONFIG_PATH", this_root .. "/lib/pkgconfig", ":")
setenv("ANACONDA_ROOT", this_root)

Or adding a tcl modulefile similar to the above tcl template for
Anaconda.

Note: Users can add other packages and mix a local stack of packages
with the premade environments. For Python and R packages users can apply
pip install and install.packages respectively to install
packages on their home. In order to install packages in a differnt path
than home, we can specify the desired path and add the new path to the
library path of the software. See examples under the interactive
command line options examples.

Configuration

The sbox and interactive commands are reading the required
information from the below JSON config file.

{
 "disk_quota_paths": [],
 "cpu_partition": [],
 "gpu_partition": [],
 "interactive_partition_timelimit": {},
 "jupyter_partition_timelimit": {},
 "partition_qos": {},
 "kernel_module": {},
 "env_module": {}
}

The config file includes:

	disk_quota_paths: A list of paths to the disk for finding users
quotas. By default the first input is considered as the users’ home
path.

	cpu_partition: A list of computational partitions.

	gpu_partition: A list of GPU partitions.

	interactive_partition_timelimit: A dictionary of interactive
partitions (i.e. users should access by srun) and their time
limits (hour). The first input is considered as the default
partition.

	jupyter_partition_timelimit: A dictionary of computational/gpu
partitions that users can run Jupter servers interactively and their
time limits (hour). The first input is considered as the default
partition.

	partition_qos: A dictionary of partitions and the corresponding
quality of services.

	kernel_module: A dictionary of kernels and the corresponding
modules. A Python kernel is required (review the Requirments).

	env_module: A dictionary of virtual environments and the
corresponding modules.

For example:

{
 "disk_quota_paths": ["/home", "/data", "/gprs", "/storage/htc"],
 "cpu_partition": ["Interactive","Lewis","Serial","Dtn","hpc3","hpc4","hpc4rc","hpc5","hpc6","General","Gpu"],
 "gpu_partition": ["Gpu","gpu3","gpu4"],
 "interactive_partition_timelimit": {
 "Interactive": 4,
 "Dtn": 4,
 "Gpu": 2
 },
 "jupyter_partition_timelimit": {
 "Lewis": 8,
 "hpc4": 8,
 "hpc5": 8,
 "hpc6": 8,
 "gpu3": 8,
 "gpu4": 8,
 "Gpu": 2
 },
 "partition_qos": {
 "Interactive": "interactive",
 "Serial": "seriallong",
 "Dtn": "dtn"
 },
 "kernel_module": {
 "python": "anaconda",
 "r": "r-essentials",
 "julia": "julia"
 },
 "env_module": {
 "tensorflow-v1.9": "tensorflow/1.9.0",
 "tensorflow": "tensorflow",
 "pytorch": "pytorch",
 "r-bio": "r-bioessentials"
 }
}

 Sbox

Sbox

sbox command includes various Slurm commands at one place. Users can
use different options to find the information about the cluster and
their accounts and activities. Beyond the Slurm commands, sbox
provides some Unix features including users’ groups, disk quotas and
starting ssh agents. The ssh-agent lets users communicate with clients
outside the cluster such as GitHub and GitLab or with other nodes within
the cluster via ssh without asking for the passphrase (you need the
passphrase to start the ssh-agent).

Command line options

	-h, --help: Show the help message and exit.

	-a, --account: Return user’s Slurm accounts by using Slurm
sacctmgr. If the cluster does not use Slurm for users’ account
management, it returns empty output.

	-f, --fairshare: Return users’ fairshare by using Slurm
sshare command. If the cluster does not follow a fairshare model,
it returns empty output.

	-g, --group: Return user’s posix groups by using Unix groups
command.

	-q, --queue: Return user’s jobs in the Slurm queue by Slurm using
squeue command.

	-j, --job: Show a running/pending job info by using Slurm
scontrol command. It requires a valid job ID as argument.

	-c, --cpu: Return computational resources including number of
cores and amount of memory on each node. It uses Slurm sjstat
command.

	-p, --partition: Show cluster partitions by using Slurm sinfo
command.

	-u, --user: Store a user ID. By default it uses $USER as user
ID for any query that needs a user ID. It can be used with other
options to find the information for other users.

	-v, --version: Show program’s version number and exit.

	--eff: Show efficiency of a job. It requires a valid job ID as
argument. It uses Slurm seff command for completed/finished jobs
and Unix top command for a running job.

	--history: Return jobs history for last day, week, month or year.
It requires one of the day/week/month/year options as an argument. It
uses Slurm sacct command and returns empty output if the cluster
does not use Slurm for users’ account management.

	--pending: Return user’s pending jobs by using Slurm squeue
command.

	--running: Return user’s running jobs by using Slurm squeue
command.

	--cancel: Cancel jobs by a single ID or a comma separated list of
IDs using Slurm scancel command.

	--qos: Show user’s quality of services (QOS) and a list of
available QOS in the cluster. It uses Slurm sacctmgr show assoc
command and returns empty output if the cluster does not use Slurm
for users’ account management.

	--quota: Return user’s disk quotas. It uses lfs quota command
for LFS systems and Unix df command for NFS systems. It returns
pooled size of the disk if the cluster does not have user/group
storage accounts.

	--ncpu: Show number of available cpus on the cluster using Slurm
sinfo command.

	--ncgu: Show number of available gpus on the cluster using Slurm
squeue and sinfo commands.

	--gpu: Show gpu resources including gpu cards’ name and numbers
using Slurm sinfo command.

	--license: Show available license servers using Slurm
scontrol command.

	--reserve: Show Slurm reservations using Slurm scontrol
command.

	--topusage: Show top usage users using Slurm sreport command.

	--whodat: Show users informations by UID. It uses ldapsearch
command and returns empty output if the cluster does not use LDAP.

	--whodat2: Show users informations by name. It uses
ldapsearchcommand and returns empty output if the cluster does
not use LDAP.

	--agent: Start, stop and list user’s ssh-agents on the current
host. It requires one of the start/stop/list options as an argument.
Use ssh -o StrictHostKeyChecking=no to disable asking for host
key acceptances.

	--report: Show current cluster utilization based on the running
jobs. It uses Slurm sinfo and squeue commands.

Examples

Jobs histoty:

[user@lewis4-r630-login-node675 ~]$ sbox --hist day
-- Jobs History - Last Day ---
 JobID User Account State Partition QOS NCPU NNod ReqMem Submit Reserved Start Elapsed End NodeList
---------- ------ ------- ---------- --------- ------- ---- ---- ------ ------------------- ---------- ------------------- ---------- ------------------- --------------------
 23126125 user general COMPLETED Interact+ intera+ 1 1 2Gn 2021-07-28T01:25:05 00:00:00 2021-07-28T01:25:05 00:00:03 2021-07-28T01:25:08 lewis4-c8k-hpc2-nod+
 23126126 user general COMPLETED Interact+ intera+ 1 1 2Gn 2021-07-28T01:25:13 00:00:00 2021-07-28T01:25:13 00:00:03 2021-07-28T01:25:16 lewis4-c8k-hpc2-nod+
 23126127 user general COMPLETED Interact+ intera+ 1 1 2Gn 2021-07-28T01:25:20 00:00:00 2021-07-28T01:25:20 00:00:08 2021-07-28T01:25:28 lewis4-c8k-hpc2-nod+
 23126128 user genera+ COMPLETED Interact+ intera+ 1 1 2Gn 2021-07-28T01:25:49 00:00:00 2021-07-28T01:25:49 00:00:03 2021-07-28T01:25:52 lewis4-c8k-hpc2-nod+
 23126129 user genera+ COMPLETED Interact+ intera+ 1 1 2Gn 2021-07-28T01:26:05 00:00:00 2021-07-28T01:26:05 00:00:06 2021-07-28T01:26:11 lewis4-c8k-hpc2-nod+
 23126130 user genera+ COMPLETED Gpu normal 1 1 2Gn 2021-07-28T01:26:38 00:00:02 2021-07-28T01:26:40 00:00:11 2021-07-28T01:26:51 lewis4-z10pg-gpu3-n+
 23126131 user genera+ CANCELLED+ Gpu normal 1 1 2Gn 2021-07-28T01:27:43 00:00:01 2021-07-28T01:27:44 00:01:03 2021-07-28T01:28:47 lewis4-z10pg-gpu3-n+

Jobs efficiency for running and compeleted jobs:

[user@lewis4-r630-login-node675 ~]$ sbox --eff 23227816
------------------------------------- Job Efficiency -------------------------------------
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 47262 user 20 0 115700 3888 1600 S 0.0 0.0 0:00.03 bash
 47346 user 20 0 113292 149298 1256 S 99.0 23.0 0:13.30 python

RES: shows resident memory which is accurate representation of how much actual physical memory a process is consuming
%CPU: shows the percentage of the CPU that is being used by the process

[user@lewis4-r630-login-node675 ~]$ sbox --eff 23126131
------------------------------------- Job Efficiency -------------------------------------
Job ID: 23126131
Cluster: lewis4
User/Group: user/user
State: COMPLETED (exit code 0)
Cores: 1
CPU Utilized: 00:11:01
CPU Efficiency: 48.59% of 00:21:03 core-walltime
Memory Utilized: 445.80 MB
Memory Efficiency: 24.24% of 2.00 GB

Accounts, fairshares, and groups:

[user@lewis4-r630-login-node675 ~]$ sbox -afg
-- Accounts --
rcss-gpu root general-gpu rcss general

--------------------------------------- Fairshare --
 Account User RawShares NormShares RawUsage EffectvUsage FairShare
-------------------- ---------- ---------- ----------- ----------- ------------- ----------
root user parent 1.000000 0 0.000000 1.000000
general-gpu user 1 0.000005 3942 0.000016 0.098089
rcss user 1 0.001391 1327 0.001147 0.564645
general user 1 0.000096 3196356 0.000243 0.174309
rcss-gpu user 1 0.000181 0 0.000000 0.999976

--- Groups ---
user : user rcss gaussian biocompute rcsslab-group rcss-maintenance rcss-cie software-cache

Disk quotas:

[user@lewis4-r630-login-node675 ~]$ sbox --quo
------------------------------------- user /home storage -------------------------------------
 File Used Use% Avail Size Type
 /home/user 996M 20% 4.1G 5.0G nfs4

------------------------------------- user /data storage -------------------------------------
 Filesystem used quota limit grace files quota limit grace
 /data 85.89G 0k 105G - 1477223 0 0 -

Jobs in the queue:

[user@lewis4-r630-login-node675 ~]$ sbox -q
----------------------------------- Jobs in the Queue ------------------------------------
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 23150514 Lewis jupyter- user R 5:29 1 lewis4-r630-hpc4-node537

Cluster resources:

[user@lewis4-r630-login-node675 ~]$ sbox --ngpu
------------------------------------- Number of GPUs -------------------------------------
Partition Gpu has 19 gpus available out of 27 (70%)
Partition gpu3 has 15 gpus available out of 15 (100%)
Partition gpu4 has 4 gpus available out of 12 (33%)

[user@lewis4-r630-login-node675 ~]$ sbox --ncpu
------------------------------------- Number of CPUs -------------------------------------
Partition Interactive has 158 cpus available out of 160 (99%)
Partition Lewis has 161 cpus available out of 2344 (7%)
Partition Serial has 42 cpus available out of 48 (88%)
Partition Dtn has 35 cpus available out of 36 (97%)
Partition hpc3 has 24 cpus available out of 456 (5%)
Partition hpc4 has 79 cpus available out of 1008 (8%)
Partition hpc4rc has 58 cpus available out of 952 (6%)
Partition hpc5 has 70 cpus available out of 1400 (5%)
Partition hpc6 has 0 cpus available out of 2976 (0%)
Partition General has 1837 cpus available out of 7008 (26%)
Partition Gpu has 383 cpus available out of 412 (93%)

Interactive

interactive is an alias for using cluster interactively using Slurm
srun and sbatch commands. The interactive jupyter provides a
JupyterLab interface for using scientific software including Python, R,
Julia, and their libraries. The command submits a batch file by
sbatch command and runs a Jupyter server on the cluster. Multiple
kernels and environments can be applied to use different software and
packages in JupyterLab.

Command line options

	-h, --help: Show this help message and exit.

	-a, --account: Slurm account name or project ID.

	-n, --ntasks: Number of tasks (cpus).

	-N, --nodes: Number of nodes.

	-p, --partition: Partition name.

	-t, --time: Number of hours based on the partitions timelimit.

	-l, --license: Add a license to an interactive session.

	-m, --mem: Amount of memory (per GB).

	-g, --gpu: Number of gpus.

	-k, --kernel: Jupyter kernel for python, r, julia. The default
kernel is python.

	-e, --environment: Virtual environment(s) for a JupyterLab
session.

	-E, --myenv: Path to a local virtual environment. The local
virtual envs should contain JupyterLab.

Examples

Using the cluster interactively:

[user@lewis4-r630-login-node675 ~]$ interactive
Logging into Interactive partition with 2G memory, 1 cpu for 2 hours ...
[user@lewis4-r7425-htc5-node835 ~]$

Using the cluster interactively with more time and resources:

[user@lewis4-r630-login-node675 ~]$ interactive --mem 16 -n 6 -t 4
Logging into Interactive partition with 16G memory, 6 cpu for 4 hours ...
[user@lewis4-r7425-htc5-node835 ~]$

Using the cluster interactively with a license:

[user@lewis4-r630-login-node675 ~]$ interactive --mem 16 -n 6 -t 4 -l matlab
Logging into Interactive partition with 16G memory, 6 cpu for 4 hours with a matlab license ...
[user@lewis4-r7425-htc5-node835 ~]$

Using a Gpu interactively:

[user@lewis4-r630-login-node675 ~]$ interactive -p Gpu
Logging into Gpu partition with 1 gpu, 2G memory, 1 cpu for 2 hours ...
[user@lewis4-r730-gpu3-node431 ~]$

Using JupyterLab:

[user@lewis4-r630-login-node675 ~]$ interactive jupyter
Logging into Lewis partition with 2G memory, 1 cpu for 2 hours ...
Starting Jupyter server (it might take about a couple minutes) ...
Starting Jupyter server ...
Starting Jupyter server ...

Jupyter Notebook is running.

Open a new terminal in your local computer and run:
ssh -NL 8888:lewis4-r630-hpc4-node303:8888 user@lewis.rnet.missouri.edu

After that open a browser and go:
http://127.0.0.1:8888/?token=9e223bd179d228e0e334f8f4a85dfd904eebd0ab9ded7e55

To stop the server run the following on the cluster:
scancel 23150533

Using JupyterLab with R kernel:

[user@lewis4-r630-login-node675 ~]$ interactive jupyter -k r
Logging into Lewis partition with 2G memory, 1 cpu for 2 hours ...
Starting Jupyter server (it might take about a couple minutes) ...
Starting Jupyter server ...
Starting Jupyter server ...
...

Using TensorFlow on JupyterLab by a different account and on a partition
with 16 GB memory for 8 hours:

[user@lewis4-r630-login-node675 ~]$ interactive jupyter -a general-gpu -p gpu3 --mem 16 -t 8 -e tensorflow
Logging into gpu3 partition with 1 gpu, 16G memory, 1 cpu for 8 hours with account general-gpu ...
Starting Jupyter server (it might take about a couple minutes) ...
Starting Jupyter server ...
Starting Jupyter server ...
...

Note: Users can install other packages and mix local packages with
the premade environments. For example, for Python:

pip install --target </path/my-packages/lib/> <pkg-name>
export PYTHONPATH=</path/my-packages/lib/>:$PYTHONPATH

For R, run the following in R:

dir.create("<your/path/for/R/version>")
install.packages("<pkg-name>", repos = "http://cran.us.r-project.org", lib = "<your/path/for/R/version>")
.libPaths("<your/path/for/R/version>")

Using a local virtual environment:

[user@lewis4-r630-login-node675 ~]$ interactive jupyter -E </path/to/local/env>
Logging into Lewis partition with 2G memory, 1 cpu for 2 hours ...
Starting Jupyter server (it might take about a couple minutes) ...
Starting Jupyter server ...

Note: The local environments must include jupyterlab. For R
environments, they must also contain r-irkernel. For instance:

conda create -p </path/to/local/env> -c conda-forge r-base jupyterlab r-irkernel

 Index

Index

nav.xhtml

 Table of Contents

 		
 Sbox

 		
 Quick install

 		
 Requirements

 		
 Python kernel (Anaconda)

 		
 R kernel

 		
 Julia kernel

 		
 On demand Python and R pakages

 		
 Configuration

 		
 Sbox

 		
 Command line options

 		
 Interactive

 		
 Command line options

_images/SBox_application_SC21.png
Sbox: simple toolbox for Slurm
Ashkan Mirzace
Research Computing Support Services

University of Missol

University of Missouri

Introduction

Slurm is one of the mast. popular workload managers
among HPC dlusters. Shurm provides numerous com:
mands and options for resource allocations and mon
itoring activities. Applying the large munber of the
commands and options, can be very challenging for
the new cluster users. Sbox s asitple and lightweight
Python toolbox for Slurm that collected a set of of

Shurm and Unix commands at one place

Sbox
Slumm vnix | [zes/zoae
it =3
caccenss
P 15Tum and U cnmands that e appbe i S

Shax is dasigned to provide important information
about users’ activities and cluster resources, as well as
facilitate resource allocations on a HPC cluster. Shax
includes two commands: sbox and interactive

sbox

sbox includes various Slurm commands at one place
and help users find the information abont their activ

ities and cluster resources. Beyond the Slurm com.

mands, sbox provides some Unix features including
users’ groups, disk quotas or starting ssh agents.

Thble L abo command I aptins

On a browser

Quick install

 Download and extract the latest Shox release

o Install Anaconda and create the required virtual
environments and modulefiles.

« Update the config file based on the cluster
information.

#Place a modulefile for Sbox under
$MODULEPATH/sbox and load the module or add
the Shax bin directory to $PATH

config

ettt 0,
o pamitit 11,

e prition st nier: (1,
frartician goats 11,

Fisure 2The snteractive. supytes conmand st s pyer Lo ssson on camputsons s sndshows o 1 o e s

interactive

Features

interactive i an alins for using cluster interac
tively using Slurn srun and sbatch commands. The
interactive jupyter pravidesa JupyterLab inter
face for using scientific software inchuding Python, R
Julia, and their ibraries. The command submits a
batch file tostart a Jupyter server on the duster. Mul
tiple kernels and environments can be applied to use
different software and packages in JupyterLab.

interactive [jupyter] -h

Tk 2 sateracesve canmand I opins
The interactive jupyter command wes An

conda for running Python, R, and many scientific
packages.

 Access to many Shum features at ane place:
oF
o Easy ability to start a JupyerLab session.

ilitate request resources interactively

o JupyterLab interface with multiple kernels.

o JupyterLab interfce with access to premade virtual
environments such as TensorFlow and PyTorch,

o JupyterLab interface with access to a local virtual
environments.

#Easy to set up and configure. 1t can be installed in
the user level or cluster-vide.

o Explanatory help options (~-help) and reference
manuals (nan sbox, man interactive)

o Improving seff command by using top command
for showing the running jobs effciency

* Managing users ssheagent to be able to
communicate with dlients outside (e.g. GitHub) or
within the cluster without asking for the passphrase
(1sers need the passphrase to start the ssh-agent)

o Helping users by showing their firshares, accounts,
quotas, jobs’ history, running and pending jobs, as
well as cluster resources.

Tob S cnfguton
Requirements

= 368 The
interactive jupyter command requires Ana.

Shax requires Slurm and Python

conda and an_environment module system (e
Luod) in addition to Slurm and Python. To use
R and Julia from a JupyterLab session, we need R
and irkernel as well as Julin to be installed. Review
Sher docs for installing. Anaconda. and ereating the
Note that
sbox options require some other commands. Review

required virtual envs and modulefikes.
the options requirement in he

Admowledgements

This work wonld not hase been passible withont support and
suidanco of my coleagnos at the University of Misonrt-Colunbia
Roearch Comprting Support and Services. Special thanls to
Asit Magcoom, Predrag Luic, Bran Markors, anl Phil e
mon for ther nsights and progresive comments and reviews.

o Author: Astkan Mizaee

«Documertation: sbar rendtdocs o

_static/minus.png

_static/plus.png

_static/file.png

_static/SBox_application_SC21.png
Sbox: simple toolbox for Slurm
Ashkan Mirzace
Research Computing Support Services

University of Missol

University of Missouri

Introduction

Slurm is one of the mast. popular workload managers
among HPC dlusters. Shurm provides numerous com:
mands and options for resource allocations and mon
itoring activities. Applying the large munber of the
commands and options, can be very challenging for
the new cluster users. Sbox s asitple and lightweight
Python toolbox for Slurm that collected a set of of

Shurm and Unix commands at one place

Sbox
Slumm vnix | [zes/zoae
it =3
caccenss
P 15Tum and U cnmands that e appbe i S

Shax is dasigned to provide important information
about users’ activities and cluster resources, as well as
facilitate resource allocations on a HPC cluster. Shax
includes two commands: sbox and interactive

sbox

sbox includes various Slurm commands at one place
and help users find the information abont their activ

ities and cluster resources. Beyond the Slurm com.

mands, sbox provides some Unix features including
users’ groups, disk quotas or starting ssh agents.

Thble L abo command I aptins

On a browser

Quick install

 Download and extract the latest Shox release

o Install Anaconda and create the required virtual
environments and modulefiles.

« Update the config file based on the cluster
information.

#Place a modulefile for Sbox under
$MODULEPATH/sbox and load the module or add
the Shax bin directory to $PATH

config

ettt 0,
o pamitit 11,

e prition st nier: (1,
frartician goats 11,

Fisure 2The snteractive. supytes conmand st s pyer Lo ssson on camputsons s sndshows o 1 o e s

interactive

Features

interactive i an alins for using cluster interac
tively using Slurn srun and sbatch commands. The
interactive jupyter pravidesa JupyterLab inter
face for using scientific software inchuding Python, R
Julia, and their ibraries. The command submits a
batch file tostart a Jupyter server on the duster. Mul
tiple kernels and environments can be applied to u