Sbox

Release v1.2

Ashkan Mirzaee

Jul 30, 2022

INSTALL

1 Features

3
1.1 Quickinstall e e e 3
1.2 Requirements ot i i e e e e e e e e e e e e e e 4
1.3 Configuration e e e e 8
L4 SbOX . . . 9
1.5 Interactive 13

Sbox, Release v1.2

Sbox is a toolbox for Slurm that provides information about users’ accounts and jobs as well as information about
the cluster resources. Sbox also can help Slurm admins to collect users’ information by user and job IDs. Interactive
command uses Slurm srun and sbatch commands to request resources interactively including running a Jupyter server
on the cluster.

Note: The source code and latest release of Sbox is available on the following repository https://github.com/ashki23/
sbox.

Sbox: simple toolbox for Slurm
Ashkan Mirzaee

Research Computing Support Services
University of Missouri

)

University of Missouri

S sC21

Introduction

Slurm is one of the mast popular workload managers
amang HPC dusters. Shum provides numerous com
mands and options for resource allocations and mon
itoring activitics. Applying the large number of the
1ds and options, can be very challenging for
the new cluster nsers. Sbox is a simple and lightsweight
Python toolbex for Slurm that collected a set of of
Shurm and Unix commands at ane place.

comm

Sbox
Slurm Unix
sinfe scamteol | | grows
macon mjstac ar
amn setr o
mccr arere ey
L e
PSS ———
Figise 1 and Uséx. el hat s applicin Shese

Sbar is designed to provide important information
about users” activities and chuster resorees, as well as
facilitate resource allocations on a HPC cluster. Shax
includes two commands: sbox and

On the cluster

On a local terminal

On a browser

Quick install

«Dawnload and extract the latest Shax release

e Install Anaconda and create the required virtual
enviromments and modlefiles

o Update the contig file based an the cluster
information.

o Place a modulefile for Shax under
$MODULEP ATH/sbox and load the module ar add
the Sharx bin dircctory to SPATH.

config

i
ek _gquota_patnans (1,
uparitirt 0,

@ partitiants 0]
tintaractive partit ion tinalintt: (],
Jupytar partit ion timel mit" (1,
pattion <

riacnalneds

Figure 2The Lateractive Jupyter canmand strts a ayierLab session on 2 camputansl nock and shaws how 12 o the vz

interactive

Features

sbox.

sbox includes varions Slurm commands at ane place
and help users find the information about their activ

ities and cluster resources. Beyond the Slurm com.

mands, sbox provides some Unix features including
users’ groups, disk quotas or starting ssh agents.

sbox -h

Tuble Labor commaad Ine aptians

interactive is an alias for using cluster iterac
tively nsing Slurm srun and sbatch commands. The
interactive jupyter provides n JupyterLab inter.
face for using scientific software including Pythan, R
Julia, and their lbraries. The command submits a
batch file tostart a Jupyter server on the cluster. Ml
tiple kernels and environments can be applied to use

different software and packages in JupyterLab,

interactive [jupyter] -h

The interactive jupyter command uscs Ana-
conda for running Python, R, and many scientific
packages.

o Access to many Shurm features at one place

litate request, resonrces interactively

sy ability to

upyerLab session.

« JapyterLab interface with multiple kernek.

« JupyterLab fnterfuce with access to premade virtnal
environments such as TensorFlow and PyTorch

o JupyterLab interface with acces to a local sirtual
environments.

« Ensy toset up and confignre. It ain be installed in
the user level or cluster-wide.

~help) and reference

manuals (nan sbox, man interactive)

o Explanatory help options (-

o Improving sef£ command by using top command
for showing the running jobs efficiency;

« Managing users ssh-agent to be able to
communicate with dients outside (e GitHub) or
within the cluster without asking for the passphrase
(uasers need the passphrase to start the ssh-agent).

« Helping users by showing their firsharcs, accounts,
qotas, jobs’ history, running and pending jobs, as
well as cluster resources.

Tabe 3 Shes combgaraton B

Requirements

Shax requires Slurm and Python >= 368, The
interactive jupyter command requires Ana
conda and an_ environment module system (e
Linod) in addition to Slurm and Python. To use

and Julia from o JupyterLab scssion, we need R
and irkernel as well as Julia to be installed. Review

Sho docs for installing Anaconda and creating the
Note that
sbox options require some other commands. Review
the options requirement in here.

required virtnal envs and modulefiles

Acknowledgements

This work would not have been possible without support and
suidance of my coll
Rescarch Con
Asif Mag oo
mn for their

. Special thanks to
Procrag Lazie, Brian Marckors, anel Phili Fecl-
and progressive comments and reviews.

TR R T o}
= Sonrce: github com/ashlizs abexe
« Documentation: sbor relthcdocsio (8]

INSTALL

https://github.com/ashki23/sbox
https://github.com/ashki23/sbox

Sbox, Release v1.2

2 INSTALL

CHAPTER
ONE

1.1

FEATURES

Access to many Slurm features at one place.

Facilitate request resources interactively.

Easy ability to start a JupyerLab session.

JupyterLab interface with multiple kernels.

JupyterLab interface with access to premade virtual environments such as TensorFlow and PyTorch.
JupyterLab interface with access to a local virtual environments.

Easy to set up and configure. It can be installed in the user level or cluster-wide.

Explanatory help options (--help) and reference manuals (man sbox, man interactive).
Improving seff command by using top command for showing the running jobs efficiency.

Managing users ssh-agent to be able to communicate with clients outside (e.g. GitHub) or within the cluster
(other nodes) without asking for the passphrase.

Helping users by showing their fairshares, accounts, quotas, jobs’ history, running and pending jobs, as well as
cluster resources.

Quick install

Download and extract the latest Sbox release.

To access JupyerLab sessions, install Anaconda and create required virtual environments and modulefiles. Re-
view “Requirements” to learn more.

Update the config file based on the cluster information. Review “Configuration” to learn more.

Place a modulefile for Sbox under $MODULEPATH/sbox directory and load the module or add the Sbox bin
directory to $PATH. A Sbox template modulefile can be found in here.

https://github.com/ashki23/sbox/releases/latest
https://github.com/ashki23/sbox/blob/main/templates/1.2.lua

Sbox, Release v1.2

1.2 Requirements

Sbox requires Slurm and Python >=3.6.8. The interactive jupyter command requires Anaconda and an environ-
ment module system (e.g. Lmod) in addition to Slurm and Python. To use R and Julia in JupyterLab sessions, we need
R and irkernel as well as Julia to be installed.

Note that Sbox options require some other commands. Review their requirements under the command line options.

The following shows how to install Anaconda and create the required virtual envs and modulefiles.

1.2.1 Python kernel (Anaconda)

The interactive jupyter command provides a JupyterLab interface for running Python and many scientific pack-
ages by using Anaconda. To install Anaconda, find the latest version of Anaconda from here and run:

wget https://repo.anaconda.com/archive/Anaconda3-<year.month>-Linux-x86_64.sh
bash Anaconda3-<year.month>-Linux-x86_64.sh -b -p /<cluster software path>/anaconda/
—,<year.month>

In the above lines, update <year.month> (e.g. 2021.05) based on the Anaconda version and <cluster software
path> (e.g. /cluster/software/) based on the cluster path.

To load Anaconda by modeule load command, create the following modeulefile under $MODULEPATH/anaconda/
<year.month>.lua:

% 1ua %

whatis([[Name : anacondal])

whatis([[Version : <year.month>]1)

whatis([[Target : x86_64]])

whatis([[Short description : Python3 distribution including conda and 250+ scientific.,
—packages.]])

help([[Python3 distribution including conda and 250+ scientific packages.]])

-- Create environment variables

local this_root = "/<cluster software path>/anaconda/<year.month>"
prepend_path("PATH", this_root .. "/bin", ":")
prepend_path("LIBRARY_PATH", this_root .. "/lib", ":')
prepend_path("LD_LIBRARY_PATH", this_root .. "/lib", ":")
prepend_path("MANPATH", this_root .. "/share/man", ":")
prepend_path("INCLUDE", this_root .. "/include", ":")
prepend_path("C_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("CPLUS_INCLUDE_PATH", this_root .. "/include", ":'")
prepend_path("PKG_CONFIG_PATH", this_root .. "/lib/pkgconfig", ":")

setenv (""ANACONDA_ROOT", this_root)

Or adding the following tcl modulefile under $MODULEPATH/anaconda/<year.month>:

#%Modulel.®
Metadata ######H#HHRH#HRHHHHBHARHRHHBHBRHRHHBHBRHRHHRH

set this_module anaconda
set this_version <year.month>
set this_root /<cluster software path>/${this_module}/${this_version}

(continues on next page)

4 Chapter 1. Features

https://lmod.readthedocs.io/en/latest/
https://www.anaconda.com/products/individual#linux

Sbox, Release v1.2

(continued from previous page)

set this_docs https://docs.anaconda.com/
set this_module_upper [string toupper ${this_module}]
Module ####H##H#HBHHHRBHHHBHHHBHHHHBHHHRHHARBHARBH AR
proc ModulesHelp { } {
global this_module this_version this_root this_docs
puts Stderr NWhdedededehdefefdedehdedefdhdefhdefhdefehdefefdedfdedefhdfidefhdefehddiddiid
puts stderr "Name: ${this_module}"
puts stderr "Version: ${this_version}

puts stderr "Documentation: ${this_docs}"
putS Stderr "**\n"

}
module-whatis "Set up environment for ${this_module} ${this_version}"

prepend-path PATH ${this_root}/bin

prepend-path LIBRARY_PATH ${this_root}/lib
prepend-path LD_LIBRARY_PATH ${this_root}/lib
prepend-path MANPATH ${this_root}/share/man
prepend-path INCLUDE ${this_root}/include

prepend-path C_INCLUDE_PATH ${this_root}/include
prepend-path CPLUS_INCLUDE_PATH ${this_root}/include
prepend-path PKG_CONFIG_PATH ${this_root}/lib/pkgconfig
setenv ${this_module_upper}_ROOT ${this_root}

1.2.2 R kernel

Users can run R scripts within a JupterLab notebook by interactive jupyter -k r. To have R, irkernel and many
other R packages, we can create the following env including r-essentials from Anaconda:

cd /<cluster software path>/anaconda/<year.month>
./bin/conda create -n r-essentials-<R version> -c conda-forge r-essentials r-base r-
—irkernel jupyterlab

In the above lines, <cluster software path> and <year.month> should be updated based on the Anaconda path
and version, and <R version> (e.g. 4.0.3) based on the version of R in the env.

The following modulefile should be added to $MODULEPATH/r-essentials/<R version>.lua to be able to load
the R env:

P lua _ %

whatis([[Name : r-essentials]])

whatis([[Version : <R version>]])

whatis([[Target : x86_64]])

whatis([[Short description : A conda environment for R and 80+ scientific packages.]])
help([[A conda environment for R and 80+ scientific packages.]])

-- Create environment variables
local this_root = "/<cluster software path>/anaconda/envs/r-essentials-<R version>"

prepend_path("PATH", this_root .. "/bin", ":")

(continues on next page)

1.2. Requirements 5

https://docs.anaconda.com/anaconda/user-guide/tasks/using-r-language/

Sbox, Release v1.2

(continued from previous page)

prepend_path("LIBRARY_PATH", this_root .. "/lib", ":™)
prepend_path("LD_LIBRARY_PATH", this_root .. "/lib", ":")
prepend_path("MANPATH", this_root .. "/share/man", ":")
prepend_path("INCLUDE", this_root .. "/include", ":")
prepend_path("C_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("CPLUS_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("PKG_CONFIG_PATH", this_root .. "/lib/pkgconfig", ":")

setenv (""ANACONDA_ROOT", this_root)

Or adding a tcl modulefile similar to the above tcl template for Anaconda.

1.2.3 Julia kernel

The interactive jupyter -k julia command provides Julia from a JupyterLab notebook. Julia can be installed
from Spack, source or Anaconda. The following shows how to install Julia from Anaconda (Note that if Julia have been
installed on the cluster, you can skip this section and use the available Julia module instead).

cd /<cluster software path>/anaconda/<year.month>
./bin/conda create -n julia-<version> -c conda-forge julia

In the above lines, <cluster software path> and <year.month> should be updated based on the Anaconda path
and version, and <version> (e.g. 1.6.1) based on the version of Julia in the env.

The following modulefile should be added to $MODULEPATH/ julia/<version>.lua:

o 1ua %

whatis([[Name : juliall)

whatis([[Version : <version>]])

whatis([[Target : x86_64]])

whatis([[Short description : The Julia Language: A fresh approach to technical.
—computing]])

help([[The Julia Language: A fresh approach to technical computing]])

-- Create environment variables

local this_root = "/<cluster software path>/anaconda/envs/julia-<version>"
prepend_path("PATH", this_root .. "/bin", ":")
prepend_path("LIBRARY_PATH", this_root .. "/lib", ":')
prepend_path("LD_LIBRARY_PATH", this_root .. "/lib", ":")
prepend_path("MANPATH", this_root .. "/share/man", ":")
prepend_path("INCLUDE", this_root .. "/include", ":")
prepend_path("C_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("CPLUS_INCLUDE_PATH", this_root .. "/include", ":'")
prepend_path("PKG_CONFIG_PATH", this_root .. "/lib/pkgconfig", ":")

setenv (""ANACONDA_ROOT", this_root)

Or adding a tcl modulefile similar to the above tcl template for Anaconda.

Note that the first time that users run interactive jupyter -k julia,Julia Jupyter kernal (IJulia) will be installed
under ~/ . julia.

6 Chapter 1. Features

https://spack.io/
https://julialang.org/downloads/
https://anaconda.org/conda-forge/julia

Sbox, Release v1.2

1.2.4 On demand Python and R pakages

Popular Python pakages that are not available in Anaconda can be added to interactive jupyter -e. For instance
the following shows how to create a TensorFlow (TF) env:

cd /<cluster software path>/anaconda/<year.month>
./bin/conda create -n tensorflow-gpu-<version> anaconda
./bin/conda install -n tensorflow-gpu-<version> tensorflow-gpu gpustat

Similarly, we can create a PyTorch (PT) env with:

cd /<cluster software path>/anaconda/<year.month>
./bin/conda create -n pytorch-<version> anaconda
./bin/conda install -n pytorch-<version> -c pytorch pytorch gpustat

For instance, we can collect popular R bio packages in the following env from bioconda channel:

cd /<cluster software path>/anaconda/<year.month>

./bin/conda create -n r-bioessentials-<version> -c bioconda -c conda-forge bioconductor-
—edger bioconductor-oligo r-monocle3 r-signac r-seurat scanpy macs2 jupyterlab r-
—irkernel

In the above lines, <cluster software path> and <year.month> should be updated based on the Anaconda path
and version, and <version> (e.g. 2.4. 1) based on the version of TF, PT, or R.

For each env, we need to add a modulefile to $MODULEPATH/<env name>/<version>.lua. For instance
$MODULEPATH/tensorflow/<version>.lua is:

o lua %

whatis([[Name : tensorflow]])

whatis([[Version : <version>]])

whatis([[Target : x86_64]])

whatis([[Short description : Python3 distribution including TensorFlow and 250+,
—»scientific packages.]])

help([[Python3 distribution including TensorFlow and 250+ scientific packages.]])

-- Create environment variables

local this_root = "/<cluster software path>/anaconda/envs/tensorflow-gpu-<version>"
prepend_path("PATH", this_root .. "/bin", ":")

prepend_path("LIBRARY_PATH", this_root .. "/lib", ":')
prepend_path("LD_LIBRARY_PATH", this_root .. "/lib", ":")

prepend_path("MANPATH", this_root .. "/share/man", ":")

prepend_path("INCLUDE", this_root .. "/include", ":")
prepend_path("C_INCLUDE_PATH", this_root .. "/include", ":")
prepend_path("CPLUS_INCLUDE_PATH", this_root .. "/include", ":'")
prepend_path("PKG_CONFIG_PATH", this_root .. "/lib/pkgconfig", ":")

setenv (""ANACONDA_ROOT", this_root)

Or adding a tcl modulefile similar to the above tcl template for Anaconda.

Note: Users can add other packages and mix a local stack of packages with the premade environments. For Python
and R packages users can apply pip install and install.packages respectively to install packages on their home.
In order to install packages in a differnt path than home, we can specify the desired path and add the new path to the
library path of the software. See examples under the interactive command line options examples.

1.2. Requirements 7

Sbox, Release v1.2

1.3 Configuration

The sbox and interactive commands are reading the required information from the below JSON config file.

{
"disk_quota_paths": [],
"cpu_partition": [],

"gpu_partition": [],
"interactive_partition_timelimit": {},
"jupyter_partition_timelimit": {3},
"partition_qos": {},

"kernel_module": {},

"env_module": {}

The config file includes:

» disk_quota_paths: A list of paths to the disk for finding users quotas. By default the first input is considered
as the users’ home path.

e cpu_partition: A list of computational partitions.
e gpu_partition: A list of GPU partitions.

e interactive_partition_timelimit: A dictionary of interactive partitions (i.e. users should access by srun)
and their time limits (hour). The first input is considered as the default partition.

e jupyter_partition_timelimit: A dictionary of computational/gpu partitions that users can run Jupter
servers interactively and their time limits (hour). The first input is considered as the default partition.

e partition_qgos: A dictionary of partitions and the corresponding quality of services.

* kernel_module: A dictionary of kernels and the corresponding modules. A Python kernel is required (review
the Requirments).

e env_module: A dictionary of virtual environments and the corresponding modules.

For example:

{
"disk_quota_paths": ["/home", "/data", "/gprs", "/storage/htc"],
"cpu_partition": ["Interactive",'"Lewis","Serial","Dtn","hpc3","hpc4","hpc4rc","hpc5",
—"hpc6","General","Gpu"],
"gpu_partition": ["Gpu","gpu3",'"gpud"],
"interactive_partition_timelimit": {
"Interactive": 4,
"Dtn": 4,
"Gpu": 2
3,
"jupyter_partition_timelimit": {
"Lewis": 8,
"hpc4":
"hpc5":
"hpc6":
"gpu3":
"gpud":
"Gpu": 2

00 00 00 00

(continues on next page)

8 Chapter 1. Features

Sbox, Release v1.2

(continued from previous page)

1,

"partition_gos": {
"Interactive": "interactive",
"Serial": "seriallong",
"Dtn": "dtn"

1,

"kernel_module": {
"python": "anaconda",
"r": "r-essentials",
"julia": "julia"

1,

"env_module": {
"tensorflow-v1.9": "tensorflow/1.9.0",

"tensorflow": "tensorflow",
"pytorch": "pytorch",
"r-bio": "r-bioessentials"

1.4 Sbox

sbox command includes various Slurm commands at one place. Users can use different options to find the information
about the cluster and their accounts and activities. Beyond the Slurm commands, sbox provides some Unix features
including users’ groups, disk quotas and starting ssh agents. The ssh-agent lets users communicate with clients outside
the cluster such as GitHub and GitLab or with other nodes within the cluster via ssh without asking for the passphrase
(you need the passphrase to start the ssh-agent).

1.4.1 Command line options

-h, --help: Show the help message and exit.

e -a, --account: Return user’s Slurm accounts by using Slurm sacctmgr. If the cluster does not use Slurm for
users’ account management, it returns empty output.

e -f, --fairshare: Return users’ fairshare by using Slurm sshare command. If the cluster does not follow a
fairshare model, it returns empty output.

e -g, --group: Return user’s posix groups by using Unix groups command.
* -g, --queue: Return user’s jobs in the Slurm queue by Slurm using squeue command.
* -j, --job: Show a running/pending job info by using Slurm scontrol command. It requires a valid job ID

as argument.

e -c, --cpu: Return computational resources including number of cores and amount of memory on each node.
It uses Slurm sjstat command.

* -p, --partition: Show cluster partitions by using Slurm sinfo command.

e -u, --user: Store a user ID. By default it uses $USER as user ID for any query that needs a user ID. It can be
used with other options to find the information for other users.

e -v, --version: Show program’s version number and exit.

1.4. Sbox 9

Sbox, Release v1.2

e —-eff: Show efficiency of a job. It requires a valid job ID as argument. It uses Slurm seff command for
completed/finished jobs and Unix top command for a running job.

* --history: Return jobs history for last day, week, month or year. It requires one of the day/week/month/year
options as an argument. It uses Slurm sacct command and returns empty output if the cluster does not use
Slurm for users’ account management.

e --pending: Return user’s pending jobs by using Slurm squeue command.
e --running: Return user’s running jobs by using Slurm squeue command.
e --cancel: Cancel jobs by a single ID or a comma separated list of IDs using Slurm scancel command.

e --qos: Show user’s quality of services (QOS) and a list of available QOS in the cluster. It uses Slurm sacctmgr
show assoc command and returns empty output if the cluster does not use Slurm for users’ account management.

e --quota: Return user’s disk quotas. It uses 1fs quota command for LFS systems and Unix df command for
NFS systems. It returns pooled size of the disk if the cluster does not have user/group storage accounts.

e --ncpu: Show number of available cpus on the cluster using Slurm sinfo command.

e --ncgu: Show number of available gpus on the cluster using Slurm squeue and sinfo commands.
* -—gpu: Show gpu resources including gpu cards’ name and numbers using Slurm sinfo command.
e --license: Show available license servers using Slurm scontrol command.

e --reserve: Show Slurm reservations using Slurm scontrol command.

* --topusage: Show top usage users using Slurm sreport command.

* --whodat: Show users informations by UID. It uses 1dapsearch command and returns empty output if the
cluster does not use LDAP.

e --whodat2: Show users informations by name. It uses 1dapsearchcommand and returns empty output if the
cluster does not use LDAP.

* --agent: Start, stop and list user’s ssh-agents on the current host. It requires one of the start/stop/list options as
an argument. Use ssh -o StrictHostKeyChecking=no to disable asking for host key acceptances.

e —-report: Show current cluster utilization based on the running jobs. It uses Slurm sinfo and squeue com-

mands.
Examples
Jobs histoty:
[user@lewis4-r630-login-node675 ~]$ sbox --hist day
—— Jobs..
—History - Last Day -—----—----———-- e
JobID User Account State Partition QO0S NCPU NNod RegMem o
—Submit Reserved Start Elapsed End o

—NodeList

23126125 wuser general COMPLETED Interact+ intera+ 1 1 2Gn 2021-07-
—28T01:25:05 00:00:00 2021-07-28T01:25:05 00:00:03 2021-07-28T01:25:08 lewis4-c8k-
—hpc2-nod+

23126126 user general COMPLETED Interact+ intera+ 1 1 2Gn 2021-07-
—28T01:25:13 00:00:00 2021-07-28T01:25:13 00:00:03 2021-07-28T01:25:16 lewis4-c8k-
—hpc2-nod+

(continues on next page)

10 Chapter 1. Features

Sbox, Release v1.2

(continued from previous page)

23126127 wuser general COMPLETED Interact+ intera+ 1 1 2Gn 2021-07-
—28T01:25:20 00:00:00 2021-07-28T01:25:20 00:00:08 2021-07-28T01:25:28 lewis4-c8k-
—hpc2-nod+

23126128 user genera+ COMPLETED Interact+ intera+ 1 1 2Gn 2021-07-
—28T01:25:49 00:00:00 2021-07-28T01:25:49 00:00:03 2021-07-28T01:25:52 lewis4-c8k-
—hpc2-nod+

23126129 wuser genera+ COMPLETED Interact+ intera+ 1 1 2Gn 2021-07-
—28T01:26:05 00:00:00 2021-07-28T01:26:05 00:00:06 2021-07-28T01:26:11 lewis4-c8k-

—hpc2-nod+

23126130 wuser genera+ COMPLETED Gpu normal 1 1 2Gn 2021-07-
—28T01:26:38 00:00:02 2021-07-28T01:26:40 00:00:11 2021-07-28T01:26:51 lewis4-z10pg-
—gpu3-n+

23126131 wuser genera+ CANCELLED+ Gpu normal 1 1 2Gn 2021-07-

—28T01:27:43 00:00:01 2021-07-28T01:27:44 00:01:03 2021-07-28T01:28:47 lewis4-z10pg-
—gpu3-n+

Jobs efficiency for running and compeleted jobs:

[user@lewis4-r630-login-node675 ~]$ sbox --eff 23227816
————————————————————————————————————— Job Efficiency ----------------------- -

PID USER PR NI VIRT RES SHR S % CPU %MEM TIME+ COMMAND
47262 user 20 0 115700 3888 1600 S 0.0 0.0 0:00.03 bash
47346 user 20 0 113292 149298 1256 S 99.0 23.0 0:13.30 python

RES: shows resident memory which is accurate representation of how much actual physical.
—memory a process is consuming
%CPU: shows the percentage of the CPU that is being used by the process

[user@lewis4-r630-login-node675 ~]$ sbox --eff 23126131
————————————————————————————————————— Job Efficiency -------------------- -

Job ID: 23126131

Cluster: lewis4

User/Group: user/user

State: COMPLETED (exit code 0)

Cores: 1

CPU Utilized: 00:11:01

CPU Efficiency: 48.59% of 00:21:03 core-walltime
Memory Utilized: 445.80 MB

Memory Efficiency: 24.24% of 2.00 GB

Accounts, fairshares, and groups:

[user@lewis4-r630-login-node675 ~]$ sbox -afg
—— Accounts -—---------------— oo

—

rcss-gpu root general-gpu rcss general

Account User RawShares NormShares RawUsage EffectvUsage .

(continues on next page)

1.4. Sbox 11

Sbox, Release v1.2

(continued from previous page)

—FairShare

root user parent 1.000000 0 0.000000 1.
— 000000

general-gpu user 1 0.000005 3942 0.000016 0.
098089

rcss user 1 0.001391 1327 0.001147 0.
564645

general user 1 0.000096 3196356 0.000243 0.
174309

rcss-gpu user 1 0.000181 0 0.000000 0.
999976

——— Groups ----——--————————

user : user rcss gaussian biocompute rcsslab-group rcss-maintenance rcss-cie software-
—.cache

Disk quotas:

[user@lewis4-r630-login-node675 ~]$ sbox --quo

————————————————————————————————————— user /home storage ---------—---—-—————————————————_—
File Used Use% Avail Size Type
/home/user 996M 20% 4.1G 5.0G nfs4

Filesystem used quota limit grace files quota 1limit grace
/data 85.89G 0k 105G - 1477223 0 0 -

Jobs in the queue:

[user@lewis4-r630-login-node675 ~]$ sbox -q
——————————————————————————————————— Jobs in the Queue ---------------------

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
23150514 Lewis jupyter- user R 5:29 1 lewis4-r630-hpc4-
—node537

Cluster resources:

[user@lewis4-r630-login-node675 ~]$ sbox --ngpu
————————————————————————————————————— Number of GPUS -------------—-mmmmm oo

Partition Gpu has 19 gpus available out of 27 (70%)
Partition gpu3 has 15 gpus available out of 15 (100%)

Partition gpu4 has 4 gpus available out of 12 (33%)

12 Chapter 1. Features

Sbox, Release v1.2

[user@lewis4-r630-login-node675 ~]$ sbox --ncpu

—

—————————————————————————————— Number of CPUS --------------

Partition Interactive has 158 cpus available out of 160 (99%)
Partition Lewis has 161 cpus available out of 2344 (7%)
Partition Serial has 42 cpus available out of 48 (88%)
Partition Dtn has 35 cpus available out of 36 (97%)
Partition hpc3 has 24 cpus available out of 456 (5%)
Partition hpc4 has 79 cpus available out of 1008 (8%)
Partition hpc4rc has 58 cpus available out of 952 (6%)
Partition hpc5 has 70 cpus available out of 1400 (5%)
Partition hpc6 has 0 cpus available out of 2976 (0%)
Partition General has 1837 cpus available out of 7008 (26%)
Partition Gpu has 383 cpus available out of 412 (93%)

1.5 Interactive

interactive is an alias for using cluster interactively using Slurm srun and sbatch commands. The interactive
jupyter provides a JupyterLab interface for using scientific software including Python, R, Julia, and their libraries.
The command submits a batch file by sbatch command and runs a Jupyter server on the cluster. Multiple kernels and

environments can be applied to use different software and packages in JupyterLab.

1.5.1 Command line options

--help: Show this help message and exit.

--account: Slurm account name or project ID.

--ntasks: Number of tasks (cpus).

--nodes: Number of nodes.

--partition: Partition name.

--time: Number of hours based on the partitions timelimit.
--license: Add alicense to an interactive session.

--mem: Amount of memory (per GB).

--gpu: Number of gpus.

--kernel: Jupyter kernel for python, r, julia. The default kernel is python.

--environment: Virtual environment(s) for a JupyterLab session.

e -E, --myenv: Path to alocal virtual environment. The local virtual envs should contain JupyterLab.

Examples

Using the cluster interactively:

[user@lewis4-r630-login-node675 ~]$§ interactive

Logging into Interactive partition with 2G memory, 1 cpu for 2 hours ...

[user@lewis4-r7425-htc5-node835 ~]$

Using the cluster interactively with more time and resources:

1.5.

Interactive

13

Sbox, Release v1.2

[user@lewis4-r630-login-node675 ~]$ interactive --mem 16 -n 6 -t 4
Logging into Interactive partition with 16G memory, 6 cpu for 4 hours ...
[user@lewis4-r7425-htc5-node835 ~]$

Using the cluster interactively with a license:

[user@lewis4-r630-login-node675 ~]$ interactive --mem 16 -n 6 -t 4 -1 matlab

Logging into Interactive partition with 16G memory, 6 cpu for 4 hours with a matlab.
—license ...

[user@lewis4-r7425-htc5-node835 ~1$%

Using a Gpu interactively:

[user@lewis4-r630-login-node675 ~]$ interactive -p Gpu
Logging into Gpu partition with 1 gpu, 2G memory, 1 cpu for 2 hours ...
[user@lewis4-r730-gpu3-node431 ~]$

Using JupyterLab:

[user@lewis4-r630-login-node675 ~]$ interactive jupyter

Logging into Lewis partition with 2G memory, 1 cpu for 2 hours ...
Starting Jupyter server (it might take about a couple minutes)
Starting Jupyter server ...

Starting Jupyter server ...

Jupyter Notebook is running.

Open a new terminal in your local computer and run:
ssh -NL 8888:lewis4-r630-hpc4-node303:8888 user@lewis.rnet.missouri.edu

After that open a browser and go:
http://127.0.0.1:8888/?token=9e223bd179d228e0e334£f8f4a85dfd904eebd®ab9ded7e55

To stop the server run the following on the cluster:
scancel 23150533

Using JupyterLab with R kernel:

[user@lewis4-r630-login-node675 ~]$ interactive jupyter -k r
Logging into Lewis partition with 2G memory, 1 cpu for 2 hours ...
Starting Jupyter server (it might take about a couple minutes)
Starting Jupyter server ...

Starting Jupyter server ...

Using TensorFlow on JupyterLab by a different account and on a partition with 16 GB memory for 8 hours:

[user@lewis4-r630-login-node675 ~]$ interactive jupyter -a general-gpu -p gpu3 --mem 16 -
~t 8 -e tensorflow

Logging into gpu3 partition with 1 gpu, 16G memory, 1 cpu for 8 hours with account..
—.general-gpu ...

Starting Jupyter server (it might take about a couple minutes)

Starting Jupyter server ...

(continues on next page)

14 Chapter 1. Features

Sbox, Release v1.2

(continued from previous page)

Starting Jupyter server ...

Note: Users can install other packages and mix local packages with the premade environments. For example, for
Python:

pip install --target </path/my-packages/lib/> <pkg-name>
export PYTHONPATH=</path/my-packages/lib/>:$PYTHONPATH

For R, run the following in R:

dir.create("<your/path/for/R/version>")

install.packages("<pkg-name>", repos = "http://cran.us.r-project.org", lib = "<your/path/
—for/R/version>")

.libPaths("<your/path/for/R/version>")

Using a local virtual environment:

[user@lewis4-r630-login-node675 ~]$ interactive jupyter -E </path/to/local/env>
Logging into Lewis partition with 2G memory, 1 cpu for 2 hours ...

Starting Jupyter server (it might take about a couple minutes)

Starting Jupyter server ...

Note: The local environments must include jupyterlab. For R environments, they must also contain r-irkernel.
For instance:

conda create -p </path/to/local/env> -c conda-forge r-base jupyterlab r-irkernel

1.5. Interactive 15

	Features
	Quick install
	Requirements
	Python kernel (Anaconda)
	R kernel
	Julia kernel
	On demand Python and R pakages

	Configuration
	Sbox
	Command line options

	Interactive
	Command line options

